

BeamBeam3D: Code Improvements and Applications

Ji Qiang

Center of Beam Physics Lawrence Berkeley National Laboratory

SciDAC II, COMPASS collaboration meeting, UCLA, Los Angeles, Dec 2, 2008

BeamBeam3D:

Parallel Strong-Strong / Strong-Weak Simulation

- Multiple physics models:
 - strong-strong (S-S); weak-strong (W-S)
- Multiple-slice model for finite bunch length effects
- New algorithm -- shifted Green function -- efficiently models long-range parasitic collisions
- Parallel particle-based decomposition to achieve perfect load balance
- Lorentz boost to handle crossing angle collisions
- Arbitrary closed-orbit separation (static or time-dep)
- Independent beam parameters for the 2 beams
- Multiple bunches, multiple collision points
- Linear transfer matrix + one turn chromaticity

BeamBeam3D: Code Improvement

Defects fixing

- ✓ Single-precision in linear transfer map
- ✓ Longitudinal synchrotron map
- ✓ Luminosity output frequency
- ✓ Multiple ID list
- ✓ Time measurement for restart
- Thin lens sextupole model
- Quiet start for initial particle sampling
- Sampling particle trajectory diagnostic
- Beam transfer function diagnostic
- Conducting wire compensation model
- Distributed long-range soft-Gaussian beam-beam model
- Crab cavity compensation model
- Footprint diagnostic (in progress)

Model of Conducting Wire Compensation

B.Erdelyi and T.Sen, "Compensation of beam-beam effects in the Tevatron with wires," (FNAL-TM-2268, 2004)4

Thin Lens Approximation for Crab Cavity Deflection

BERKELEY LAB

$$x^{n+1} = x^{n}$$

$$Px^{n+1} = Px^{n} + \frac{qV}{E_{s}} \sin(\omega z^{n} / c)$$

$$z^{n+1} = z^{n}$$

$$\delta E^{n+1} = \delta E^{n} + \frac{qV}{E_{s}} \cos(\omega z^{n} / c) x^{n}$$

$$here :$$

$$V = \frac{cE_{s} \tan \phi}{\omega \sqrt{\beta_{x,crab} \beta_{x}^{*}}}$$

BeamBeam3D Applications to RHIC

RHIC Physical Parameters for the Tune Scan Simulations

Beam energy (GeV)	100
Protons per bunch	20e10
_β* (m)	0.8
Rms spot size (mm)	0.14
Betatron tunes (blue)	(0.695, 0.685)
Rms bunch length (m)	0.8
Synchrotron tune	5.5e-4
Momentum spread	0.7e-3
Beam-Beam Parameter	0.00977
Chromaticity	(2.0, 2.0)

Intensity (experiment) and Emittance (simulation) Evolution of Blue and Yellow Proton Beams at RHIC

Averaged Emittance Growth vs. Tunes (near half integer, above diagonal)

Averaged Emittance Growth vs. Tunes (near half integer, below diagonal)

Averaged Emittance Growth vs. Tunes (below integer, below diagonal)

Averaged Emittance Growth vs. Tunes (above integer, below diagonal)

Simulated and Measured BTF Signal at RHIC without Compensation Wire

Simulated and Measured BTF Signal at RHIC with 50 A Compensation Wire and 30 mm Separation

Tune Shift vs. Separation from Simulated BTF Signal and Analytical Model with 50 A Compensation Wire

$$\Delta\nu_x(W) = -\frac{\mu_0}{8\pi^2(B\rho)}\beta_x \left[\frac{I_W L \cos 2\theta_W}{r_W^2} \right], \quad \Delta\nu_y(W) = +\frac{\mu_0}{8\pi^2(B\rho)}\beta_y \left[\frac{I_W L \cos 2\theta_W}{r_W^2} \right]$$

B.Erdelyi and T.Sen, "Compensation of beam-beam effects in the Tevatron with wires," (FNAL-TM-2268, 2004).

Strong-Strong Beam-Beam Simulation LHC Wire Compensation (2 Head-On + 64 Long Range)

Emittance Growth Evolution w/o Wire Compensation

Emittance Growth Evolution with Reduced Separation

Emittance Growth Evolution w/o Machine Chromaticity

Luminosity Evolution with Reduced Separation

Emittance Growth Evolution with Current Fluctuation

A Schematic Plot of LHC Collision at 1 IP and Crab Cavities

One Turn Transfer Map with Beam-Beam and Crab Cavity

$M = Ma M1 Mb M1^{-1} M M2^{-1} Mc M2$

Ma: transfer map from head-on crossing angle beam-beam collision

Mb,c: transfer maps from crab cavity deflection

M1-2: transfer maps between crab cavity and collision point

M: one turn transfer map of machine

Head-on Beam-Beam Collision with Crossing Angle

LHC Physical Parameters for Testing Crab Cavity

7
10.5e10
0.5/4000
0.01592
(0.31, 0.32)
0.077
0.0019
0.111e-3
400.8 MHz

Luminoisty Evolution with 0.15 mrad Half Crossing Angle with/without Crab Cavity

RMS Size Square with 0.15 mrad Half Crossing Angle with/without Crab Cavity

Luminoisty Evolution without/with 0.85 um and 1.7 um Horizontal Offset Noise

RMS Size Square Evolution without/with 0.85 um and 1.7 um Horizontal Offset Noise

A Schematic Plot of LHC Collision with 2 IPs and Crab Cavities....

Luminoisty Evolution with 0.15 mrad Half Crossing Angle with/without Crab Cavity for LHC Upgrade

Luminosity vs. Beta* for LHC Crab Cavity Compensation

